当前位置: 首页 > news >正文

做水电到哪个网站找信息东莞网络推广代运营

做水电到哪个网站找信息,东莞网络推广代运营,备案二级域名分发,绵阳吉工建设文章目录 配置镜像源下载Pytorch验证使用Pytorch进行数字识别 配置镜像源 Anaconda下载完毕之后,有两种方式下载pytorch,一种是用页面可视化的方式去下载,另一种方式就是直接用命令行工具去下载。 但是由于默认的Anaconda走的是外网&#x…

文章目录

  • 配置镜像源
  • 下载Pytorch
  • 验证
  • 使用Pytorch进行数字识别

配置镜像源

Anaconda下载完毕之后,有两种方式下载pytorch,一种是用页面可视化的方式去下载,另一种方式就是直接用命令行工具去下载。
在这里插入图片描述
但是由于默认的Anaconda走的是外网,所以下载很慢,我们得首先配置镜像源,这里推荐用清华的,之前用中科大的出问题了,换成清华马上就好了。。。

打开Termial或者iTerm2
输入如下命令

conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

然后输入如下命令查看是否ok了

conda config --show channels

在输入如下命令

conda config --set show_channel_urls yes

这个时候你的配置基本就完成了,接下来你就可以开始下载了

下载Pytorch

pytorch官网
进入到官网,然后基于你的机器配置选择命令
在这里插入图片描述
然后将命令放入到命令行中进行运行。
特别注意!!!
这里一定要把梯子等工具都关掉,不然会出现HTTP相关的异常。
可以考虑使用如下命令处理一下

conda config --set ssl_verify false

如果踩坑了,从如下几个地方思考:

  1. 镜像源问题,换镜像源
  2. ssl验证关闭,使用上面的命令
  3. 别开梯子!!!!!!!

验证

使用如下命令就可以查看是否安装成功了

conda list | grep pytorch

在这里插入图片描述

使用Pytorch进行数字识别

import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt
from PIL import Image# 定义神经网络模型
class Net(torch.nn.Module):def __init__(self):super().__init__()self.fc1 = torch.nn.Linear(28*28, 64)  # 第一个全连接层,将输入从784维映射到64维self.fc2 = torch.nn.Linear(64, 64)     # 第二个全连接层,将输入从64维映射到64维self.fc3 = torch.nn.Linear(64, 64)     # 第三个全连接层,将输入从64维映射到64维self.fc4 = torch.nn.Linear(64, 10)     # 第四个全连接层,将输入从64维映射到10维(对应10个类别)def forward(self, x):x = torch.nn.functional.relu(self.fc1(x))  # 应用ReLU激活函数x = torch.nn.functional.relu(self.fc2(x))  # 应用ReLU激活函数x = torch.nn.functional.relu(self.fc3(x))  # 应用ReLU激活函数x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)  # 应用log_softmax激活函数return x# 定义数据加载函数
def get_data_loader(is_train):to_tensor = transforms.Compose([transforms.ToTensor()])  # 定义数据转换data_set = MNIST("", is_train, transform=to_tensor, download=True)  # 加载MNIST数据集return DataLoader(data_set, batch_size=15, shuffle=True)  # 创建数据加载器# 定义模型评估函数
def evaluate(test_data, net):n_correct = 0n_total = 0with torch.no_grad():  # 禁用梯度计算for (x, y) in test_data:outputs = net.forward(x.view(-1, 28*28))  # 前向传播计算输出for i, output in enumerate(outputs):if torch.argmax(output) == y[i]:  # 比较预测结果与真实标签n_correct += 1n_total += 1return n_correct / n_total  # 返回准确率# 定义模型保存函数
def save_model(net, path="mnist_model.pth"):torch.save(net.state_dict(), path)  # 保存模型权重到文件# 定义模型加载函数
def load_model(net, path="mnist_model.pth"):net.load_state_dict(torch.load(path))  # 从文件加载模型权重# 定义图像预测函数
def predict_image(image, net):net.eval()  # 设置为评估模式with torch.no_grad():  # 禁用梯度计算output = net(image.view(-1, 28*28))  # 前向传播计算输出predicted = torch.argmax(output, dim=1)  # 获取预测结果return predicted.item()  # 返回预测类别# 定义图像加载函数
def load_image(image_path):image = Image.open(image_path).convert('L')  # 打开图像并转换为灰度图transform = transforms.Compose([transforms.Resize((28, 28)), transforms.ToTensor()])  # 定义图像转换image = transform(image)  # 应用转换return image  # 返回处理后的图像def main():train_data = get_data_loader(is_train=True)  # 加载训练数据test_data = get_data_loader(is_train=False)  # 加载测试数据net = Net()  # 初始化神经网络模型# 训练模型optimizer = torch.optim.Adam(net.parameters(), lr=0.001)  # 定义Adam优化器for epoch in range(2):  # 训练2个epochfor (x, y) in train_data:net.zero_grad()  # 清零梯度output = net.forward(x.view(-1, 28*28))  # 前向传播计算输出loss = torch.nn.functional.nll_loss(output, y)  # 计算损失loss.backward()  # 反向传播计算梯度optimizer.step()  # 更新模型参数print("epoch", epoch, "accuracy:", evaluate(test_data, net))  # 打印每个epoch后的准确率# 保存模型save_model(net)# 加载模型net = Net()  # 初始化新的神经网络模型load_model(net)  # 加载已保存的模型权重print("Loaded model accuracy:", evaluate(test_data, net))  # 打印加载模型后的准确率# 使用模型预测新图像image_path = "path_to_your_image.png"  # 替换为你要预测的图像路径image = load_image(image_path)  # 加载并预处理图像prediction = predict_image(image, net)  # 使用模型进行预测print(f"Predicted digit: {prediction}")  # 打印预测结果if __name__ == "__main__":main()  # 运行main函数

第一次运行的时候,会加载数字识别模型到本地,第二次运行的时候,你就可以把训练过程的代码都注释掉了,直接使用这个最终的模型
在这里插入图片描述
第二次运行
你的模型就是这个pth文件
在这里插入图片描述

在这里插入图片描述

http://www.hyszgw.com/news/26091.html

相关文章:

  • 公司建设网站的费用吗营销软文500字范文
  • 政府网站是哪个建设的如何做一个自己的电商平台
  • 佛山南海建设局网站小程序开发公司
  • 湛江seo建站开鲁网站seo不用下载
  • 做网站空间和服务器的学生没钱怎么开网店
  • 门户网站建站目标重庆网站推广
  • 怎么区分用vs和dw做的网站人民日报新闻
  • MAKA网站做H5怎么压缩图片在线网站分析工具
  • 深圳网站建设 独占网络桔子seo网
  • 什么是移动端网站适配seo整站优化技术培训
  • 什么类型的网站品牌推广运营策划方案
  • 企业网站优化爱用建站官网
  • 网站建设 广告推广购物网站推广方案
  • wordpress 获得分类名称大侠seo外链自动群发工具
  • 网站关键词选取的步骤热点新闻事件及评论
  • 没有网站可以做cpa广告么企业推广是什么意思
  • web背景网站兰州百度推广的公司
  • 网站流量好难做免费软文发布平台有哪些
  • 做任务赚钱网站源码百度竞价广告
  • 网站代码加密赣州seo排名
  • 黄骅港务集团广州网站优化公司排名
  • 贵州做网站的公司安康seo
  • 永康市住房建设局网站百度app下载
  • 加强网站建设的原因网络营销策划书8000字
  • 网站建设要购买服务器吗在百度如何发布作品
  • 做网站的收获及感想网络推广的工作内容是什么
  • 网站名字和域名商丘seo排名
  • 做网站文案用哪个软件淘宝运营团队怎么找
  • 南京做企业网站的公司百度推广工具有哪些
  • 模板做的网站不好优化百度搜索排名推广