当前位置: 首页 > news >正文

创建网站有免费的吗如何注册腾讯企业邮箱

创建网站有免费的吗,如何注册腾讯企业邮箱,传扬互动网站建设公司,网站设计制作太原前言: 蒙特卡罗的学习基本流程: Policy Evaluation : 生成动作-状态轨迹,完成价值函数的估计。 Policy Improvement: 通过价值函数估计来优化policy。 同策略(one-policy):产生 采样轨迹的策略 和要改…

前言:

    蒙特卡罗的学习基本流程:

     Policy Evaluation :          生成动作-状态轨迹,完成价值函数的估计。

     Policy Improvement:       通过价值函数估计来优化policy。

       同策略(one-policy):产生 采样轨迹的策略 \pi^{'} 和要改善的策略 \pi 相同。

       Policy Evaluation :    通过\epsilon-贪心策略(\pi^{'}),产生(状态-动作-奖赏)轨迹。

       Policy Improvement:  原始策略也是 \epsilon-贪心策略(\pi^{'}), 通过价值函数优化, \epsilon-贪心策略(\pi^{'})

      异策略(off-policy):产生采样轨迹的  策略 \pi^{'} 和要改善的策略 \pi 不同。

      Policy Evaluation :   通过\epsilon-贪心策略(\pi^{'}),产生采样轨迹(状态-动作-奖赏)。

      Policy Improvement:  改进原始策略\pi

    两个优势:

    1: 原始策略不容易采样

    2: 降低方差

易策略常用的方案为 IR(importance sample) 重要性采样

Importance sampling is a Monte Carlo method for evaluating properties of a particular distribution, while only having samples generated from a different distribution than the distribution of interest. Its introduction in statistics is generally attributed to a paper by Teun Kloek and Herman K. van Dijk in 1978,[1] but its precursors can be found in statistical physics as early as 1949.[2][3] Importance sampling is also related to umbrella sampling in computational physics. Depending on the application, the term may refer to the process of sampling from this alternative distribution, the process of inference, or both.


一  importance-samling

    1.1 原理

     原始问题:

      u_f=\int_x p(z)f(z)dx

     如果采样N次,得到z_1,z_2,...z_N

       u_f \approx \frac{1}{N}\sum_{z_i \sim p(z)}f(z_i)

    问题: p(z) 很难采样(采样空间很大,很多时候只能采样到一部分)

   引入 q(x) 重要性分布(这也是一个分布,容易被采样)

  w(x)=\frac{p(x)}{q(x)}: 称为importance weight

            u_f =\int q(x)\frac{p(x)}{q(x)}f(x)dx

             \approx \frac{1}{N}\sum_i w(x_i)f(x_i)(大数定理)

 下面例子,我们需要对w(x_i),做归一化处理,更清楚的看出来占比

   下面代码进行了归一化处理,方案如下:

     w(x_i)=log p(x_i)-log q(x_i)

     w^1(x_i)=\frac{e^{w(x_i)}}{\sum_j e^{w(x_i)}}

     w^2(x_i)=w(x_i)-log\sum_j(e^{w(x_j)})

      

# -*- coding: utf-8 -*-
"""
Created on Wed Nov  8 16:38:34 2023@author: chengxf2
"""import numpy as np
import matplotlib.pyplot as plt
from scipy.special import logsumexpclass pdf:def __call__(self,x):passdef sample(self,n):pass#正太分布的概率密度
class Norm(pdf):#返回一组符合高斯分布的概率密度随机数。def __init__(self, mu=0, sigma=1):self.mu = muself.sigma = sigmadef __call__(self, x):#log p 功能,去掉前面常数项logp = (x-self.mu)**2/(2*self.sigma**2)return -logpdef sample(self, N):#产生N 个点,这些点符合正太分布x = np.random.normal(self.mu, self.sigma,N)return xclass Uniform(pdf):#均匀分布的概率密度def __init__(self, low, high):self.low = lowself.high = highdef __call__(self, x):#logq 功能N = len(x)a = np.repeat(-np.log(self.high-self.low), N)return -adef sample(self, N):#产生N 点,这些点符合均匀分布x = np.random.uniform(self.low, self.high,N)return xclass ImportanceSampler:def __init__(self, p_dist, q_dist):self.p_dist = p_distself.q_dist = q_distdef sample(self, N):#采样samples = self.q_dist.sample(N)weights = self.calc_weights(samples)normal_weights = weights - logsumexp(weights)return samples, normal_weightsdef calc_weights(self, samples):#log (p/q) =log(p)-log(q)return self.p_dist(samples)-self.q_dist(samples)if __name__ == "__main__":N = 10000p = Norm()q = Uniform(-10, 10)  sampler = ImportanceSampler(p, q)#samples 从q(x)采样出来的点,weight_samplesamples,weight_sample= sampler.sample(N)#以weight_sample的概率,从samples中抽样 N 个点samples = np.random.choice(samples,N, p = np.exp(weight_sample))plt.hist(samples, bins=100)


二 易策略 off-policy 原理

     target policy \pi: 原始策略 

        x:     这里面代表基于原始策略,得到的轨迹

                  \begin{bmatrix} s_0,a_0,r_1,....s_{T-1},a_{T-1},r_T,s_T \end{bmatrix}

       p(x):   该轨迹的概率

       f(x):    该轨迹的累积奖赏

      期望的累积奖赏:

                    u_f=\int_{x} f(x)p(x)dx \approx \frac{1}{N}\sum f(x_i)

    behavior policy \pi^{'}: 行为策略

     q(x): 代表各种轨迹的采样概率

    则累积奖赏函数f在概率p 也可以等价的写为:

     u_f=\int_{x}q(x)\frac{p(x)}{q(x)}f(x)dx

     E[f] \approx \frac{1}{m}\sum_{i=1}^{m}\frac{p(x_i)}{q(x_i)}f(x_i)

   

     P_i^{\pi} 和 P^{\pi^{'}} 分别表示两个策略产生i 条轨迹的概率,对于给定的一条轨迹

    \begin{bmatrix} s_0,a_0,r_1,....s_{T-1},a_{T-1},r_T,s_T \end{bmatrix}

    原始策略\pi 产生该轨迹的概率:

     P^{\pi}=\prod_{i=0}^{T-1} \pi(s_i,a_i)P_{s_i\rightarrow s_{i+1}}^{a_i}

    P^{\pi^{'}}=\prod_{i=0}^{T-1} \pi^{'}(s_i,a_i)P_{s_i\rightarrow s_{i+1}}^{a_i}

   则

    w(s)=\frac{P^{\pi}}{p^{\pi^{'}}}=\prod_{i=0}^{T-1}\frac{\pi(s_i,a_i)}{\pi^{'}(s_i,a_i)}

  若\pi 为确定性策略,但是\pi^{'} 是\pi\epsilon -贪心策略:

原始策略   p_i=\left\{\begin{matrix} \pi(s_i,a_i)=1, if: a_i==\pi(x_i) \\ \pi(s_i,a_i)=0, if: a_i \neq \pi(x_i) \end{matrix}\right.

行为策略: q_i=\left\{\begin{matrix} \pi^{'}(s_i,a_i)=1-\epsilon+\frac{\epsilon }{|A|} , if: a_i==\pi(x_i) \\ \pi^{'}(s_i,a_i)=\frac{\epsilon }{|A|}, if: a_i \neq \pi(x_i) \end{matrix}\right.

  现在通过行为策略产生的轨迹度量权重w

 理论上应该是连乘的,但是p_i=0, if a_i \neq \pi(x_i),

 考虑到只是概率的比值,上面可以做个替换

 w(s)=\frac{p^{\pi}}{p^{\pi^{'}}}=\prod\frac{e^{p_i}}{e^{q_i}}=\prod e^{p_i-q_i}

其中: w_i=\frac{e^{p_i}}{e^{q_i}}=e^{p_i-q_i}更灵活的利用importance sample)

其核心是要计算两个概率比值,上面的例子是去log,再归一化


三  方差影响


四  代码

代码里面R的计算方式跟上面是不同的,

R=\frac{1}{T-t}(\sum_{i=t}^{T-1}r_i)(\prod_{j=t}^{T-1}w_j)

w_j=e^{p_j-q_j}

# -*- coding: utf-8 -*-
"""
Created on Wed Nov  8 11:56:26 2023@author: chengxf2
"""import numpy as ap
# -*- coding: utf-8 -*-
"""
Created on Fri Nov  3 09:37:32 2023@author: chengxf2
"""# -*- coding: utf-8 -*-
"""
Created on Thu Nov  2 19:38:39 2023@author: cxf
"""
import numpy as np
import random
from enum import Enumclass State(Enum):#状态空间#shortWater =1 #缺水health = 2   #健康overflow = 3 #溢水apoptosis = 4 #凋亡class Action(Enum):#动作空间A#water = 1 #浇水noWater = 2 #不浇水class Env():def reward(self, state):#针对转移到新的环境奖赏    r = -100if state is State.shortWater:r =-1elif state is State.health:r = 1elif state is State.overflow:r= -1else: # State.apoptosisr = -100return rdef action(self, state, action):if state is State.shortWater:if action is Action.water :newState =[State.shortWater, State.health]p =[0.4, 0.6]else:newState =[State.shortWater, State.apoptosis]p =[0.4, 0.6]elif state is State.health:#健康if action is Action.water :newState =[State.health, State.overflow]p =[0.6, 0.4]else:newState =[State.shortWater, State.health]p =[0.6, 0.4]elif state is State.overflow:#溢水if action is Action.water :newState =[State.overflow, State.apoptosis]p =[0.6, 0.4]else:newState =[State.health, State.overflow]p =[0.6, 0.4]else:  #凋亡newState=[State.apoptosis]p =[1.0]#print("\n S",S, "\t prob ",proba)nextState = random.choices(newState, p)[0]r = self.reward(nextState)return nextState,rdef __init__(self):self.name = "环境空间"class Agent():def initPolicy(self):#初始化累积奖赏self.Q ={} #(state,action) 的累积奖赏self.count ={} #(state,action) 执行的次数for state in self.S:for action in self.A:self. Q[state, action] = 0.0self.count[state,action]= 0action = self.randomAction()self.policy[state]= Action.noWater #初始化都不浇水def randomAction(self):#随机策略action = random.choices(self.A, [0.5,0.5])[0]return actiondef behaviorPolicy(self):#使用e-贪心策略state = State.shortWater #从缺水开始env = Env()trajectory ={}#[s0,a0,r0]--[s1,a1,r1]--[sT-1,aT-1,rT-1]for t in range(self.T):#选择策略rnd = np.random.rand() #生成随机数if rnd <self.epsilon:action =self.randomAction()else:#通过原始策略选择actionaction = self.policy[state] newState,reward = env.action(state, action) trajectory[t]=[state,action,reward]state = newStatereturn trajectorydef calcW(self,trajectory):#计算权重q1 = 1.0-self.epsilon+self.epsilon/2.0 # a== 原始策略q2 = self.epsilon/2.0   # a!=原始策略w ={}for t, value in trajectory.items():#[state, action,reward]action =value[1]state = value[0]if action == self.policy[state]:p = 1q = q1else:p = 0q = q2w[t] = round(np.exp(p-q),3)#print("\n w ",w)return wdef getReward(self,t,wDict,trajectory):p = 1.0r=  0#=[state,action,reward]for i in range(t,self.T):r+=trajectory[t][-1]w =wDict[t]p =p*wR = p*rm = self.T-treturn R/mdef  improve(self):a = Action.noWaterfor state in self.S:maxR = self.Q[state, a]for action in self.A:R = self.Q[state,action]if R>=maxR:maxR = Rself.policy[state]= actiondef learn(self):self.initPolicy()for s in range(1,self.maxIter): #采样第S 条轨迹#通过行为策略(e-贪心策略)产生轨迹trajectory =self.behaviorPolicy()w = self.calcW(trajectory)print("\n 迭代次数 %d"%s ,"\t 缺水:",self.policy[State.shortWater].name,"\t 健康:",self.policy[State.health].name,"\t 溢水:",self.policy[State.overflow].name,"\t 凋亡:",self.policy[State.apoptosis].name)#策略评估for t in range(self.T):R = self.getReward(t, w,trajectory)state = trajectory[t][0]action = trajectory[t][1]Q = self.Q[state,action]count  = self.count[state, action]self.Q[state,action] = (Q*count+R)/(count+1)self.count[state, action]=count+1#获取权重系数self.improve() def __init__(self):self.S = [State.shortWater, State.health, State.overflow, State.apoptosis]self.A = [Action.water, Action.noWater]self.Q ={} #累积奖赏self.count ={}self.policy ={} #target Policyself.maxIter =500self.epsilon = 0.2self.T = 10if  __name__ == "__main__":agent = Agent()agent.learn()

https://img2020.cnblogs.com/blog/1027447/202110/1027447-20211013112906490-1926128536.png

http://www.hyszgw.com/news/61443.html

相关文章:

  • 网站建设贵企业推广费计入什么科目
  • 成都网站建设 工作室建设信用中国网站
  • 小学网站建设成都cms监控软件
  • 东莞容桂网站制作网站运营模式
  • 0511网站做网站现在什么尺寸合适
  • 淳安网站建设制作o2o网站建设哪家好
  • 网站设计的布局买了个网站源码后要怎么用
  • wordpress 网站图标教做网站的学校
  • 石家庄栾城区建设局网站wordpress全局jquery
  • 网站服务器的DNs怎么查网站开发与维护专业
  • 大连网站制作学校外贸网站建设 佛山
  • 郑州市惠济区建设局网站专业网站优化公司报价
  • 免费建站公司联系方式做亚马逊有什么网站可以借鉴
  • 网站源码免费下载分享论坛长春网站建设哪家公司好
  • 社区微网站建设方案ppt模板下载做英文网站需要多少
  • 网站开发前期方案南宁app小程序开发公司
  • 最专业的营销网站建设公司哪家好锦州网站建设锦州
  • 广东上海专业网站建设公司排名中国电力建设公司官网
  • 中济建设有限公司网站2023年企业黄页查询
  • 泉州建站公司模板企业网站建设及前期准备
  • 网站页头背景网站开发课程教学目标
  • 网站开发教程 布局家政网站怎么做
  • 网站网络推广推广网站建设的要求及标准
  • 纸箱 东莞网站建设上海网站建设建站
  • 齐河县建设局网站小程序开发平台哪个公司的好
  • 学网站建设维护wordpress ajax 文件
  • 网站建设工作室+怎么样长安大学门户网站是谁给做的
  • 网站建设需要c语言吗网站开发g
  • 网站开发的技术要求深圳seo专家
  • 免费刷赞网站推广免费设计模版网站