当前位置: 首页 > news >正文

电子工程师资格证seo网站推广排名

电子工程师资格证,seo网站推广排名,米拓建站怎么样,手机优化大师官方版分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测 目录 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.Matlab实现WOA-CNN-BiGRU多特征分类…

分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测

目录

    • 分类预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现WOA-CNN-BiGRU多特征分类预测,多特征输入模型,运行环境Matlab2020b及以上;
2.基于鲸鱼算法(WOA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)分类预测,优化参数为,学习率,隐含层节点,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;运行主程序即可,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

模型描述

CNN 是一种前馈型神经网络,广泛应用于深度学习领域,主要由卷积层、池化层和全连接层组成,输入特征向量可以为多维向量组,采用局部感知和权值共享的方式。卷积层对原始数据提取特征量,深度挖掘数据的内在联系,池化层能够降低网络复杂度、减少训练参数,全连接层将处理后的数据进行合并,计算分类和回归结果。
BiGRU是LSTM的一种改进模型,将遗忘门和输入门集成为单一的更新门,同时混合了神经元状态和隐藏状态,可有效地缓解循环神经网络中“梯度消失”的问题,并能够在保持训练效果的同时减少训练参数。

程序设计

  • 完整程序和数据获取方式私信博主回复MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a;  % Eq. (2.3) in the paperC=2*r2;      % Eq. (2.4) in the paperb=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.hyszgw.com/news/22473.html

相关文章:

  • 手机网站怎么做淘宝客键词优化排名
  • 个人可以做自媒体网站吗百度网盟推广怎么做
  • 做毕业网站的周记拉新app渠道
  • 做英文网站价格市场营销毕业论文5000字
  • 如何进行企业营销型网站建设山西太原网络推广
  • 自由室内设计师接单网站网址服务器查询
  • 广州企业网站建设靠谱国内5大搜索引擎
  • 大型网站服务器架构做一个企业网站需要多少钱
  • 南宁网站外包企业网站seo优化外包
  • dedecms网站如何上线百度网站打不开
  • 网站 做 app线上营销渠道主要有哪些
  • 二维码小程序制作举例说明什么是seo
  • php网站里放asp万网域名注册信息查询
  • 电子商务网站建设考试试卷软文营销是什么意思
  • 电商分销主要做什么全网搜索引擎优化
  • 北京网络法庭东莞seo排名外包
  • ecshop网站价格广州seo招聘网
  • 北京企业建站哪家好2023年适合小学生的新闻
  • 网站的下载链接怎么做域名是什么意思
  • 网站 建设平台分析深圳宝安seo外包
  • 网站建设 外文文献孔宇seo
  • 阿里巴巴网站建设教程seo外链在线提交工具
  • 石材企业网站企业推广app
  • 成都市住建局太原优化排名推广
  • 江阴市城乡建设网站百度sem
  • 朋友 合同 网站制作郑州seo排名哪有
  • 旅游网站开发的意义相关资料2345浏览器官网
  • 无锡万度网站建设十大广告联盟
  • 可信网站认证服务商市场调研报告怎么做
  • 如何做双版网站seo流量是什么意思