当前位置: 首页 > news >正文

解决网站兼容性问题厦门seo全网营销

解决网站兼容性问题,厦门seo全网营销,中铁建设集团企业门户,无广告免费的影视软件(观前提醒,这是工科AI相关的数学基础的学习笔记,不是数学专业的文章,所以没有严谨的证明和定义,数院大神请勿批评) 2. 内积和范数 2.1 内积的定义 从代数的角度来说,内积是两个向量之间的一种…

(观前提醒,这是工科AI相关的数学基础的学习笔记,不是数学专业的文章,所以没有严谨的证明和定义,数院大神请勿批评)

2. 内积和范数

2.1 内积的定义

从代数的角度来说,内积是两个向量之间的一种运算,其结果是一个实数。
设由两个 n n n维向量:
x = [ x 1 x 2 ⋯ x n ] , y = [ y 1 y 2 ⋯ y n ] \mathbf{x}=\left[\begin{array}{c} x_{1} \\ x_{2} \\ \cdots \\ x_{n} \end{array}\right], \mathbf{y}=\left[\begin{array}{c} y_{1} \\ y_{2} \\ \cdots \\ y_{n} \end{array}\right] x= x1x2xn ,y= y1y2yn
x ⋅ y = x 1 y 1 + x 2 y 2 + ⋯ + x n y n \mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} xy=x1y1+x2y2++xnyn x ⋅ y \mathbf{x} \cdot \mathbf{y} xy为向量 x \mathbf{x} x和向量 y \mathbf{y} y内积
内积具有下列性质(其中 x , y , z \mathbf{x},\mathbf{y},\mathbf{z} x,y,z n n n维向量, λ \lambda λ为实数):

  • x ⋅ y = y ⋅ x \mathbf{x}\cdot\mathbf{y}=\mathbf{y}\cdot\mathbf{x} xy=yx
  • ( λ x ) ⋅ y = x ⋅ ( λ y ) (\lambda\mathbf{x})\cdot\mathbf{y}=\mathbf{x}\cdot(\lambda\mathbf{y}) (λx)y=x(λy)
  • ( x + y ) ⋅ z = x ⋅ z + y ⋅ z (\mathbf{x}+\mathbf{y})\cdot\mathbf{z}=\mathbf{x}\cdot\mathbf{z}+\mathbf{y}\cdot\mathbf{z} (x+y)z=xz+yz
  • x = 0 \mathbf{x}=\mathbf{0} x=0时, x ⋅ x = 0 \mathbf{x}\cdot\mathbf{x}=0 xx=0;当 x ≠ 0 \mathbf{x}\ne\mathbf{0} x=0时, x ⋅ x > 0 \mathbf{x}\cdot\mathbf{x}>0 xx>0.

2.2 范数的定义

2.2.1范数的定义

范数定义了向量空间里的距离,范数能将一组实数列表(向量)映射成一个实数,它的出现使得向量之间的比较称为了可能。(其实就是向量的长度)

如果向量 x ∈ R n x\in\mathbb{R}^{n} xRn的某个实值函数 f ( x ) = ∣ ∣ x ∣ ∣ f(x)=||x|| f(x)=∣∣x∣∣满足:

  • 正定性 ∣ ∣ x ∣ ∣ ⩾ 0 ||x||\geqslant 0 ∣∣x∣∣0 ∣ ∣ x ∣ ∣ = 0 ||x||=0 ∣∣x∣∣=0当且仅当 x = 0 x=0 x=0
  • 齐次性:对任意实数 α \alpha α,都有 ∣ ∣ α x ∣ ∣ = ∣ α ∣ ⋅ ∣ ∣ x ∣ ∣ ||\alpha x||=|\alpha|\cdot||x|| ∣∣αx∣∣=α∣∣x∣∣
  • 三角不等式:对任意 x , y ∈ R n x,y\in\mathbb{R}^{n} x,yRn,都有 ∣ ∣ x + y ∣ ∣ ⩽ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\leqslant||x||+||y|| ∣∣x+y∣∣∣∣x∣∣+∣∣y∣∣

满足上述三条性质,则称 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ R n \mathbb{R}^{n} Rn上的一个向量范数。

2.2.2 常见的范数

常用的向量范数有:

  • L1范数:也叫曼哈顿距离,其公式为 ∥ x ∥ 1 = ∑ i ∣ x i ∣ \|x\|_{1}=\sum\limits_{i}\left|x_{i}\right| x1=ixi,它是一个向量中所有元素的绝对值之和;
  • L2范数:也叫欧几里得距离,其公式为 ∥ x ∥ 2 = ∑ i x i 2 \|x\|_{2}=\sqrt{\sum\limits_{i} x_{i}^{2}} x2=ixi2 ,对一个向量中所有元素取平方和,然后再开方。

2.3 内积的几何解释

知道范数的本质是距离之后,我们就可以从几何角度来解释内积,内积定义了向量空间里的角度。比如说,在向量空间中存在两个向量 u \mathbf{u} u v \mathbf{v} v,它们之间的夹角是 θ \theta θ.
u ∙ v = ∥ u ∥ ∥ v ∥ cos ⁡ θ \mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta uv=u∥∥vcosθ

http://www.hyszgw.com/news/12643.html

相关文章:

  • 关于做花茶网站的策划书百度竞价优化排名
  • 网站建设及外包郑州网络推广服务
  • 邯郸招聘网最新招聘信息2023百度地图排名怎么优化
  • 四川网站开发制作株洲seo推广
  • 用h5做简易网站代码seo的推广技巧
  • 新闻源网站怎么做公众号seo排名优化
  • 商丘做网站多少钱网站推广建站
  • 网站内容建设整改工作深圳seo优化培训
  • 那个网站攻略做的好免费的网络推广有哪些
  • 制作网站建设策划方案网站维护的内容有哪些
  • 怎样做网站域名注册凡科建站怎么样
  • 电子商务网站开发的基本要求惠州百度seo找谁
  • 做网站如何选择颜色杭州百度推广电话
  • 深圳做网站多少费用西地那非片说明书
  • 网站怎么做免费seo搜索引擎软件排名工具
  • 如何查询网站打开速度网络广告推广服务
  • 网站建设 软件企业培训课
  • 移动网站开发环境 主流seo服务优化
  • 网站二维码特效百度搜索关键词推广
  • 企业注册代理全达seo
  • 在跨境网站贸易公司做怎么样网络推广公司排行榜
  • 律师怎么做网站谷歌seo服务商
  • 网站优化师负责干什么怎么在网上做网络营销
  • 广州化妆品网站建设公司中国网站建设公司
  • 下沙做网站社区建站网站系统
  • h5网站快速搭建网络推广费用一般多少
  • 中国建设银行官方网站纪念钞预约网络推广公司经营范围
  • 一级做a爱免费网站seo公司运营
  • 中国加盟网首页百度网站关键词优化
  • 网站建设与维护txt下载今天新疆新闻头条